Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Kibble-Zurek behavior in a topological phase transition with a quadratic band crossing (2407.19780v2)

Published 29 Jul 2024 in cond-mat.stat-mech, cond-mat.dis-nn, cond-mat.quant-gas, cond-mat.str-el, and quant-ph

Abstract: Kibble-Zurek (KZ) mechanism describes the scaling behavior when driving a system across a continuous symmetry-breaking transition. Previous studies have shown that the KZ-like scaling behavior also lies in the topological transitions in the Qi-Wu-Zhang model (2D) and the Su-Schrieffer-Heeger model (1D), although symmetry breaking does not exist here. Both models with linear band crossings give that $\nu=1$ and $z=1$. We wonder whether different critical exponents can be acquired in topological transitions beyond linear band crossing. In this work, we look into the KZ behavior in a topological 2D checkerboard lattice with a quadratic band crossing. We investigate from dual perspectives: momentum distribution of the Berry curvature in clean systems for simplicity, and real-space analysis of domain-like local Chern marker configurations in disordered systems, which is a more intuitive analog to conventional KZ description. In equilibrium, we find the correlation length diverges with a power $\nu\simeq 1/2$. Then, by slowly quenching the system across the topological phase transition, we find that the freeze-out time $t_\mathrm{f}$ and the unfrozen length scale $\xi(t_\mathrm{f})$ both satisfy the KZ scaling, verifying $z\simeq 2$. We subsequently explore KZ behavior in topological phase transitions with other higher-order band crossing and find the relationship between the critical exponents and the order. Our results extend the understanding of the KZ mechanism and non-equilibrium topological phase transitions.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.