Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

$τ$-tilting finiteness and $\mathbf{g}$-tameness: Incidence algebras of posets and concealed algebras (2407.17965v2)

Published 25 Jul 2024 in math.RT

Abstract: We prove that any $\tau$-tilting finite incidence algebra of a finite poset is representation-finite, and that any $\mathbf{g}$-tame incidence algebra of a finite simply connected poset is tame. As the converse of these assertions are known to hold, we obtain characterizations of $\tau$-tilting finite incidence algebras and $\mathbf{g}$-tame simply connected incidence algebras. Both results are proved using the theory of concealed algebras. The former will be deduced from the fact that tame concealed algebras are $\tau$-tilting infinite, and to prove the latter, we show that wild concealed algebras are not $\mathbf{g}$-tame. We conjecture that any incidence algebra of a finite poset is wild if and only if it is not $\mathbf{g}$-tame, and prove a result showing that there are relatively few possible counterexamples. In the appendix, we determine the representation type of a $\tau$-tilting reduction of a concealed algebra of hyperbolic type.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com