Papers
Topics
Authors
Recent
Search
2000 character limit reached

Hardness and Approximability of Dimension Reduction on the Probability Simplex

Published 23 Jul 2024 in cs.DS, cs.IT, and math.IT | (2407.16352v1)

Abstract: Dimension reduction is a technique used to transform data from a high-dimensional space into a lower-dimensional space, aiming to retain as much of the original information as possible. This approach is crucial in many disciplines like engineering, biology, astronomy, and economics. In this paper, we consider the following dimensionality reduction instance: Given an n-dimensional probability distribution p and an integer m<n, we aim to find the m-dimensional probability distribution q that is the closest to p, using the Kullback-Leibler divergence as the measure of closeness. We prove that the problem is strongly NP-hard, and we present an approximation algorithm for it.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.