Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Survey of Explainable Artificial Intelligence (XAI) in Financial Time Series Forecasting (2407.15909v1)

Published 22 Jul 2024 in cs.LG and cs.AI

Abstract: AI models have reached a very significant level of accuracy. While their superior performance offers considerable benefits, their inherent complexity often decreases human trust, which slows their application in high-risk decision-making domains, such as finance. The field of eXplainable AI (XAI) seeks to bridge this gap, aiming to make AI models more understandable. This survey, focusing on published work from the past five years, categorizes XAI approaches that predict financial time series. In this paper, explainability and interpretability are distinguished, emphasizing the need to treat these concepts separately as they are not applied the same way in practice. Through clear definitions, a rigorous taxonomy of XAI approaches, a complementary characterization, and examples of XAI's application in the finance industry, this paper provides a comprehensive view of XAI's current role in finance. It can also serve as a guide for selecting the most appropriate XAI approach for future applications.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)

HackerNews