YOLOv9 for Fracture Detection in Pediatric Wrist Trauma X-ray Images (2403.11249v2)
Abstract: The introduction of YOLOv9, the latest version of the You Only Look Once (YOLO) series, has led to its widespread adoption across various scenarios. This paper is the first to apply the YOLOv9 algorithm model to the fracture detection task as computer-assisted diagnosis (CAD) to help radiologists and surgeons to interpret X-ray images. Specifically, this paper trained the model on the GRAZPEDWRI-DX dataset and extended the training set using data augmentation techniques to improve the model performance. Experimental results demonstrate that compared to the mAP 50-95 of the current state-of-the-art (SOTA) model, the YOLOv9 model increased the value from 42.16% to 43.73%, with an improvement of 3.7%. The implementation code is publicly available at https://github.com/RuiyangJu/YOLOv9-Fracture-Detection.
- \bibinfojournalActa orthopaedica \bibinfovolume89(\bibinfonumber4), \bibinfopages468–473 (\bibinfoyear2018)
- \bibinfojournalInvestigative radiology \bibinfovolume55(\bibinfonumber2), \bibinfopages101–110 (\bibinfoyear2020)
- \bibinfojournalEuropean journal of radiology \bibinfovolume133, \bibinfopages109373 (\bibinfoyear2020)
- \bibinfojournalCanadian Association of Radiologists Journal \bibinfovolume72(\bibinfonumber1), \bibinfopages60–72 (\bibinfoyear2021)
- \bibinfojournalActa orthopaedica \bibinfovolume90(\bibinfonumber4), \bibinfopages394–400 (\bibinfoyear2019)
- In: \bibinfobooktitleIntelligent Computing: Proceedings of the 2019 Computing Conference, Volume 1, pp. \bibinfopages971–981. \bibinfoorganizationSpringer (\bibinfoyear2019)
- \bibinfojournalEuropean journal of radiology \bibinfovolume126, \bibinfopages108925 (\bibinfoyear2020)
- In: \bibinfobooktitleProceedings of the IEEE conference on computer vision and pattern recognition, pp. \bibinfopages779–788. (\bibinfoyear2016)
- \bibinfojournalarXiv preprint arXiv:2004.10934 (\bibinfoyear2020)
- \bibinfojournalarXiv preprint arXiv:2107.08430 (\bibinfoyear2021)
- \bibinfojournalarXiv preprint arXiv:2105.04206 (\bibinfoyear2021)
- \bibinfoauthorGlenn, J.: \bibinfotitleUltralytics yolov5. GitHub. \bibinfohowpublishedhttps://github.com/ultralytics/yolov5 (\bibinfoyear2022)
- \bibinfojournalarXiv preprint arXiv:2209.02976 (\bibinfoyear2022)
- \bibinfojournalMultimedia Tools and Applications pp. \bibinfopages1–17. (\bibinfoyear2023)
- In: \bibinfobooktitleProceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. \bibinfopages7464–7475. (\bibinfoyear2023)
- \bibinfoauthorGlenn, J.: \bibinfotitleUltralytics yolov8. GitHub. \bibinfohowpublishedhttps://github.com/ultralytics/ultralytics (\bibinfoyear2023)
- In: \bibinfobooktitle2022 37th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC), pp. \bibinfopages1054–1057. \bibinfoorganizationIEEE (\bibinfoyear2022)
- \bibinfojournalMathematics \bibinfovolume10(\bibinfonumber16), \bibinfopages2939 (\bibinfoyear2022)
- \bibinfojournalDiagnostics \bibinfovolume13(\bibinfonumber20), \bibinfopages3245 (\bibinfoyear2023)
- \bibinfojournalScientific Data \bibinfovolume9(\bibinfonumber1), \bibinfopages222 (\bibinfoyear2022)
- \bibinfojournalarXiv preprint arXiv:2304.05071 (\bibinfoyear2023)
- In: \bibinfobooktitleICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. \bibinfopages2235–2239. \bibinfoorganizationIEEE (\bibinfoyear2021)
- In: \bibinfobooktitleProceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. \bibinfopages11534–11542. (\bibinfoyear2020)
- \bibinfojournalarXiv preprint arXiv:2112.05561 (\bibinfoyear2021)
- In: \bibinfobooktitleProceedings of the European conference on computer vision (ECCV), pp. \bibinfopages3–19. (\bibinfoyear2018)
- \bibinfojournalarXiv preprint arXiv:2402.13616 (\bibinfoyear2024)
- In: \bibinfobooktitleComputer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13, pp. \bibinfopages740–755. \bibinfoorganizationSpringer (\bibinfoyear2014)
- \bibinfojournalLife \bibinfovolume12(\bibinfonumber11), \bibinfopages1711 (\bibinfoyear2022)
- In: \bibinfobooktitleMedical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18, pp. \bibinfopages234–241. \bibinfoorganizationSpringer (\bibinfoyear2015)
- \bibinfojournalDiagnostics \bibinfovolume14(\bibinfonumber1), \bibinfopages11 (\bibinfoyear2023)
- \bibinfojournalBiomedical Signal Processing and Control \bibinfovolume93, \bibinfopages106144 (\bibinfoyear2024)
- \bibinfojournalInternational Journal of Oral and Maxillofacial Surgery \bibinfovolume51(\bibinfonumber11), \bibinfopages1488–1494 (\bibinfoyear2022)
- \bibinfojournalAustralian Journal of Multi-Disciplinary Engineering pp. \bibinfopages1–9. (\bibinfoyear2024)
- \bibinfojournalBiomedical Signal Processing and Control \bibinfovolume91, \bibinfopages105995 (\bibinfoyear2024)
- In: \bibinfobooktitleProceedings of the IEEE conference on computer vision and pattern recognition, pp. \bibinfopages7132–7141. (\bibinfoyear2018)
- \bibinfojournalScientific Data \bibinfovolume10(\bibinfonumber1), \bibinfopages521 (\bibinfoyear2023)
- \bibinfojournalIEEE Access \bibinfovolume10, \bibinfopages79061–79070 (\bibinfoyear2022)
- \bibinfojournalarXiv preprint arXiv:2402.09329 (\bibinfoyear2024)
- In: \bibinfobooktitleProceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops, pp. \bibinfopages390–391. (\bibinfoyear2020)
- \bibinfojournalarXiv preprint arXiv:2211.04800 (\bibinfoyear2022)
- \bibinfoauthorRuder, S.: \bibinfotitleAn overview of gradient descent optimization algorithms. \bibinfojournalarXiv preprint arXiv:1609.04747 (\bibinfoyear2016)