Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 61 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Generative Model for Small Molecules with Latent Space RL Fine-Tuning to Protein Targets (2407.13780v1)

Published 2 Jul 2024 in q-bio.BM, cs.CL, and cs.LG

Abstract: A specific challenge with deep learning approaches for molecule generation is generating both syntactically valid and chemically plausible molecular string representations. To address this, we propose a novel generative latent-variable transformer model for small molecules that leverages a recently proposed molecular string representation called SAFE. We introduce a modification to SAFE to reduce the number of invalid fragmented molecules generated during training and use this to train our model. Our experiments show that our model can generate novel molecules with a validity rate > 90% and a fragmentation rate < 1% by sampling from a latent space. By fine-tuning the model using reinforcement learning to improve molecular docking, we significantly increase the number of hit candidates for five specific protein targets compared to the pre-trained model, nearly doubling this number for certain targets. Additionally, our top 5% mean docking scores are comparable to the current state-of-the-art (SOTA), and we marginally outperform SOTA on three of the five targets.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com