Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

From Words to Worlds: Compositionality for Cognitive Architectures (2407.13419v1)

Published 18 Jul 2024 in cs.CL, cs.AI, cs.LG, cs.SC, and cs.CY

Abstract: LLMs are very performant connectionist systems, but do they exhibit more compositionality? More importantly, is that part of why they perform so well? We present empirical analyses across four LLM families (12 models) and three task categories, including a novel task introduced below. Our findings reveal a nuanced relationship in learning of compositional strategies by LLMs -- while scaling enhances compositional abilities, instruction tuning often has a reverse effect. Such disparity brings forth some open issues regarding the development and improvement of LLMs in alignment with human cognitive capacities.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 17 likes.

Upgrade to Pro to view all of the tweets about this paper: