Papers
Topics
Authors
Recent
2000 character limit reached

Reliability Function of Classical-Quantum Channels

Published 17 Jul 2024 in quant-ph, cs.IT, and math.IT | (2407.12403v4)

Abstract: We study the reliability function of general classical-quantum channels, which describes the optimal exponent of the decay of decoding error when the communication rate is below the capacity. As the main result, we prove a lower bound, in terms of the quantum Renyi information in Petz's form, for the reliability function. This resolves Holevo's conjecture proposed in 2000, a long-standing open problem in quantum information theory. It turns out that the obtained lower bound matches the upper bound derived by Dalai in 2013, when the communication rate is above a critical value. Thus, we have determined the reliability function in this high-rate case. Our approach relies on Renes' breakthrough made in 2022, which relates classical-quantum channel coding to that of privacy amplification, as well as our new characterization of the channel Renyi information.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.