Papers
Topics
Authors
Recent
Search
2000 character limit reached

DIM: Dynamic Integration of Multimodal Entity Linking with Large Language Model

Published 27 Jun 2024 in cs.CL and cs.AI | (2407.12019v1)

Abstract: Our study delves into Multimodal Entity Linking, aligning the mention in multimodal information with entities in knowledge base. Existing methods are still facing challenges like ambiguous entity representations and limited image information utilization. Thus, we propose dynamic entity extraction using ChatGPT, which dynamically extracts entities and enhances datasets. We also propose a method: Dynamically Integrate Multimodal information with knowledge base (DIM), employing the capability of the LLM for visual understanding. The LLM, such as BLIP-2, extracts information relevant to entities in the image, which can facilitate improved extraction of entity features and linking them with the dynamic entity representations provided by ChatGPT. The experiments demonstrate that our proposed DIM method outperforms the majority of existing methods on the three original datasets, and achieves state-of-the-art (SOTA) on the dynamically enhanced datasets (Wiki+, Rich+, Diverse+). For reproducibility, our code and collected datasets are released on \url{https://github.com/season1blue/DIM}.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.