Papers
Topics
Authors
Recent
Search
2000 character limit reached

Follow-Up Questions Improve Documents Generated by Large Language Models

Published 27 Jun 2024 in cs.CL and cs.AI | (2407.12017v2)

Abstract: This study investigates the impact of LLMs generating follow-up questions in response to user requests for short (1-page) text documents. Users interacted with a novel web-based AI system designed to ask follow-up questions. Users requested documents they would like the AI to produce. The AI then generated follow-up questions to clarify the user's needs or offer additional insights before generating the requested documents. After answering the questions, users were shown a document generated using both the initial request and the questions and answers, and a document generated using only the initial request. Users indicated which document they preferred and gave feedback about their experience with the question-answering process. The findings of this study show clear benefits to question-asking both in document preference and in the qualitative user experience. This study further shows that users found more value in questions which were thought-provoking, open-ended, or offered unique insights into the user's request as opposed to simple information-gathering questions.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 3 tweets with 1 like about this paper.