Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DepGAN: Leveraging Depth Maps for Handling Occlusions and Transparency in Image Composition (2407.11890v1)

Published 16 Jul 2024 in cs.CV

Abstract: Image composition is a complex task which requires a lot of information about the scene for an accurate and realistic composition, such as perspective, lighting, shadows, occlusions, and object interactions. Previous methods have predominantly used 2D information for image composition, neglecting the potentials of 3D spatial information. In this work, we propose DepGAN, a Generative Adversarial Network that utilizes depth maps and alpha channels to rectify inaccurate occlusions and enhance transparency effects in image composition. Central to our network is a novel loss function called Depth Aware Loss which quantifies the pixel wise depth difference to accurately delineate occlusion boundaries while compositing objects at different depth levels. Furthermore, we enhance our network's learning process by utilizing opacity data, enabling it to effectively manage compositions involving transparent and semi-transparent objects. We tested our model against state-of-the-art image composition GANs on benchmark (both real and synthetic) datasets. The results reveal that DepGAN significantly outperforms existing methods in terms of accuracy of object placement semantics, transparency and occlusion handling, both visually and quantitatively. Our code is available at https://amrtsg.github.io/DepGAN/.

Summary

We haven't generated a summary for this paper yet.