Papers
Topics
Authors
Recent
2000 character limit reached

Deep Image Compositing

Published 29 Mar 2021 in cs.CV | (2103.15446v1)

Abstract: In image editing, the most common task is pasting objects from one image to the other and then eventually adjusting the manifestation of the foreground object with the background object. This task is called image compositing. But image compositing is a challenging problem that requires professional editing skills and a considerable amount of time. Not only these professionals are expensive to hire, but the tools (like Adobe Photoshop) used for doing such tasks are also expensive to purchase making the overall task of image compositing difficult for people without this skillset. In this work, we aim to cater to this problem by making composite images look realistic. To achieve this, we are using Generative Adversarial Networks (GANS). By training the network with a diverse range of filters applied to the images and special loss functions, the model is able to decode the color histogram of the foreground and background part of the image and also learns to blend the foreground object with the background. The hue and saturation values of the image play an important role as discussed in this paper. To the best of our knowledge, this is the first work that uses GANs for the task of image compositing. Currently, there is no benchmark dataset available for image compositing. So we created the dataset and will also make the dataset publicly available for benchmarking. Experimental results on this dataset show that our method outperforms all current state-of-the-art methods.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.