Papers
Topics
Authors
Recent
Search
2000 character limit reached

CCVA-FL: Cross-Client Variations Adaptive Federated Learning for Medical Imaging

Published 16 Jul 2024 in cs.CV, cs.AI, and cs.LG | (2407.11652v7)

Abstract: Federated Learning (FL) offers a privacy-preserving approach to train models on decentralized data. Its potential in healthcare is significant, but challenges arise due to cross-client variations in medical image data, exacerbated by limited annotations. This paper introduces Cross-Client Variations Adaptive Federated Learning (CCVA-FL) to address these issues. CCVA-FL aims to minimize cross-client variations by transforming images into a common feature space. It involves expert annotation of a subset of images from each client, followed by the selection of a client with the least data complexity as the target. Synthetic medical images are then generated using Scalable Diffusion Models with Transformers (DiT) based on the target client's annotated images. These synthetic images, capturing diversity and representing the original data, are shared with other clients. Each client then translates its local images into the target image space using image-to-image translation. The translated images are subsequently used in a federated learning setting to develop a server model. Our results demonstrate that CCVA-FL outperforms Vanilla Federated Averaging by effectively addressing data distribution differences across clients without compromising privacy.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.