Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Fay identities for polylogarithms on higher-genus Riemann surfaces (2407.11476v2)

Published 16 Jul 2024 in hep-th, hep-ph, math.AG, and math.NT

Abstract: A recent construction of polylogarithms on Riemann surfaces of arbitrary genus in arXiv:2306.08644 is based on a flat connection assembled from single-valued non-holomorphic integration kernels that depend on two points on the Riemann surface. In this work, we construct and prove infinite families of bilinear relations among these integration kernels that are necessary for the closure of the space of higher-genus polylogarithms under integration over the points on the surface. Our bilinear relations generalize the Fay identities among the genus-one Kronecker-Eisenstein kernels to arbitrary genus. The multiple-valued meromorphic kernels in the flat connection of Enriquez are conjectured to obey higher-genus Fay identities of exactly the same form as their single-valued non-holomorphic counterparts. We initiate the applications of Fay identities to derive functional relations among higher-genus polylogarithms involving either single-valued or meromorphic integration kernels.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube