Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
98 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
52 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
15 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

NTSEBENCH: Cognitive Reasoning Benchmark for Vision Language Models (2407.10380v3)

Published 15 Jul 2024 in cs.CV, cs.AI, cs.CL, and cs.IR

Abstract: Cognitive textual and visual reasoning tasks, including puzzles, series, and analogies, demand the ability to quickly reason, decipher, and evaluate patterns both textually and spatially. Due to extensive training on vast amounts of human-curated data, LLMs and VLMs excel in common-sense reasoning tasks, however still struggle with more complex reasoning that demands deeper cognitive understanding. We introduce NTSEBench, a new dataset designed to evaluate cognitive multi-modal reasoning and problem-solving skills of large models. The dataset contains 2728 multiple-choice questions, accompanied by a total of 4,642 images, categorized into 26 different types. These questions are drawn from the nationwide NTSE examination in India and feature a mix of visual and textual general aptitude challenges, designed to assess intelligence and critical thinking skills beyond mere rote learning. We establish baselines on the dataset using state-of-the-art LLMs and VLMs. To facilitate a comparison between open source and propriety models, we propose four distinct modeling strategies to handle different modalities -- text and images -- in the dataset instances.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com