Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Deep Learning Algorithms for Early Diagnosis of Acute Lymphoblastic Leukemia (2407.10251v1)

Published 14 Jul 2024 in eess.IV, cs.CV, and cs.LG

Abstract: Acute lymphoblastic leukemia (ALL) is a form of blood cancer that affects the white blood cells. ALL constitutes approximately 25% of pediatric cancers. Early diagnosis and treatment of ALL are crucial for improving patient outcomes. The task of identifying immature leukemic blasts from normal cells under the microscope can prove challenging, since the images of a healthy and cancerous cell appear similar morphologically. In this study, we propose a binary image classification model to assist in the diagnostic process of ALL. Our model takes as input microscopic images of blood samples and outputs a binary prediction of whether the sample is normal or cancerous. Our dataset consists of 10661 images out of 118 subjects. Deep learning techniques on convolutional neural network architectures were used to achieve accurate classification results. Our proposed method achieved 94.3% accuracy and could be used as an assisting tool for hematologists trying to predict the likelihood of a patient developing ALL.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.