Papers
Topics
Authors
Recent
2000 character limit reached

What is Reproducibility in Artificial Intelligence and Machine Learning Research?

Published 29 Apr 2024 in cs.CY, cs.AI, and cs.LG | (2407.10239v2)

Abstract: In the rapidly evolving fields of AI and Machine Learning (ML), the reproducibility crisis underscores the urgent need for clear validation methodologies to maintain scientific integrity and encourage advancement. The crisis is compounded by the prevalent confusion over validation terminology. In response to this challenge, we introduce a framework that clarifies the roles and definitions of key validation efforts: repeatability, dependent and independent reproducibility, and direct and conceptual replicability. This structured framework aims to provide AI/ML researchers with the necessary clarity on these essential concepts, facilitating the appropriate design, conduct, and interpretation of validation studies. By articulating the nuances and specific roles of each type of validation study, we aim to enhance the reliability and trustworthiness of research findings and support the community's efforts to address reproducibility challenges effectively.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.