Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Introducing GPU-acceleration into the Python-based Simulations of Chemistry Framework (2407.09700v1)

Published 12 Jul 2024 in physics.comp-ph, cond-mat.mtrl-sci, physics.chem-ph, and quant-ph

Abstract: We introduce the first version of GPU4PySCF, a module that provides GPU acceleration of methods in PySCF. As a core functionality, this provides a GPU implementation of two-electron repulsion integrals (ERIs) for contracted basis sets comprising up to g functions using Rys quadrature. As an illustration of how this can accelerate a quantum chemistry workflow, we describe how to use the ERIs efficiently in the integral-direct Hartree-Fock Fock build and nuclear gradient construction. Benchmark calculations show a significant speedup of two orders of magnitude with respect to the multi-threaded CPU Hartree-Fock code of PySCF, and performance comparable to other GPU-accelerated quantum chemical packages including GAMESS and QUICK on a single NVIDIA A100 GPU.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.