Papers
Topics
Authors
Recent
2000 character limit reached

Reevaluation of Large Neighborhood Search for MAPF: Findings and Opportunities

Published 12 Jul 2024 in cs.RO | (2407.09451v2)

Abstract: Multi-Agent Path Finding (MAPF) aims to arrange collision-free goal-reaching paths for a group of agents. Anytime MAPF solvers based on large neighborhood search (LNS) have gained prominence recently due to their flexibility and scalability, leading to a surge of methods, especially those leveraging machine learning, to enhance neighborhood selection. However, several pitfalls exist and hinder a comprehensive evaluation of these new methods, which mainly include: 1) Lower than actual or incorrect baseline performance; 2) Lack of a unified evaluation setting and criterion; 3) Lack of a codebase or executable model for supervised learning methods. To address these challenges, we introduce a unified evaluation framework, implement prior methods, and conduct an extensive comparison of prominent methods. Our evaluation reveals that rule-based heuristics serve as strong baselines, while current learning-based methods show no clear advantage on time efficiency or improvement capacity. Our extensive analysis also opens up new research opportunities for improving MAPF-LNS, such as targeting high-delayed agents, applying contextual algorithms, optimizing replan order and neighborhood size, where machine learning can potentially be integrated. Code and data are available at https://github.com/ChristinaTan0704/mapf-lns-unified.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (4)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 3 tweets with 2 likes about this paper.