Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Numerical approximation of ergodic BSDEs using non linear Feynman-Kac formulas (2407.09034v2)

Published 12 Jul 2024 in math.NA, cs.NA, and math.PR

Abstract: In this work we study the numerical approximation of a class of ergodic Backward Stochastic Differential Equations. These equations are formulated in an infinite horizon framework and provide a probabilistic representation for elliptic Partial Differential Equations of ergodic type. In order to build our numerical scheme, we put forward a new representation of the PDE solution by using a classical probabilistic representation of the gradient. Then, based on this representation, we propose a fully implementable numerical scheme using a Picard iteration procedure, a grid space discretization and a Monte-Carlo approximation. Up to a limiting technical condition that guarantees the contraction of the Picard procedure, we obtain an upper bound for the numerical error. We also provide some numerical experiments that show the efficiency of this approach for small dimensions.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.