Papers
Topics
Authors
Recent
Search
2000 character limit reached

Semi-Supervised Object Detection: A Survey on Progress from CNN to Transformer

Published 11 Jul 2024 in cs.CV | (2407.08460v2)

Abstract: The impressive advancements in semi-supervised learning have driven researchers to explore its potential in object detection tasks within the field of computer vision. Semi-Supervised Object Detection (SSOD) leverages a combination of a small labeled dataset and a larger, unlabeled dataset. This approach effectively reduces the dependence on large labeled datasets, which are often expensive and time-consuming to obtain. Initially, SSOD models encountered challenges in effectively leveraging unlabeled data and managing noise in generated pseudo-labels for unlabeled data. However, numerous recent advancements have addressed these issues, resulting in substantial improvements in SSOD performance. This paper presents a comprehensive review of 27 cutting-edge developments in SSOD methodologies, from Convolutional Neural Networks (CNNs) to Transformers. We delve into the core components of semi-supervised learning and its integration into object detection frameworks, covering data augmentation techniques, pseudo-labeling strategies, consistency regularization, and adversarial training methods. Furthermore, we conduct a comparative analysis of various SSOD models, evaluating their performance and architectural differences. We aim to ignite further research interest in overcoming existing challenges and exploring new directions in semi-supervised learning for object detection.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.