Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semi-Supervised Object Detection: A Survey on Progress from CNN to Transformer (2407.08460v1)

Published 11 Jul 2024 in cs.CV

Abstract: The impressive advancements in semi-supervised learning have driven researchers to explore its potential in object detection tasks within the field of computer vision. Semi-Supervised Object Detection (SSOD) leverages a combination of a small labeled dataset and a larger, unlabeled dataset. This approach effectively reduces the dependence on large labeled datasets, which are often expensive and time-consuming to obtain. Initially, SSOD models encountered challenges in effectively leveraging unlabeled data and managing noise in generated pseudo-labels for unlabeled data. However, numerous recent advancements have addressed these issues, resulting in substantial improvements in SSOD performance. This paper presents a comprehensive review of 27 cutting-edge developments in SSOD methodologies, from Convolutional Neural Networks (CNNs) to Transformers. We delve into the core components of semi-supervised learning and its integration into object detection frameworks, covering data augmentation techniques, pseudo-labeling strategies, consistency regularization, and adversarial training methods. Furthermore, we conduct a comparative analysis of various SSOD models, evaluating their performance and architectural differences. We aim to ignite further research interest in overcoming existing challenges and exploring new directions in semi-supervised learning for object detection.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Tahira Shehzadi (11 papers)
  2. Ifza (1 paper)
  3. Didier Stricker (144 papers)
  4. Muhammad Zeshan Afzal (35 papers)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com