Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A New Self-organizing Interval Type-2 Fuzzy Neural Network for Multi-Step Time Series Prediction (2407.08010v1)

Published 10 Jul 2024 in cs.LG and cs.NE

Abstract: This paper proposes a new self-organizing interval type-2 fuzzy neural network with multiple outputs (SOIT2FNN-MO) for multi-step time series prediction. Differing from the traditional six-layer IT2FNN, a nine-layer network is developed to improve prediction accuracy, uncertainty handling and model interpretability. First, a new co-antecedent layer and a modified consequent layer are devised to improve the interpretability of the fuzzy model for multi-step predictions. Second, a new transformation layer is designed to address the potential issues in the vanished rule firing strength caused by highdimensional inputs. Third, a new link layer is proposed to build temporal connections between multi-step predictions. Furthermore, a two-stage self-organizing mechanism is developed to automatically generate the fuzzy rules, in which the first stage is used to create the rule base from empty and perform the initial optimization, while the second stage is to fine-tune all network parameters. Finally, various simulations are carried out on chaotic and microgrid time series prediction problems, demonstrating the superiority of our approach in terms of prediction accuracy, uncertainty handling and model interpretability.

Summary

We haven't generated a summary for this paper yet.