Papers
Topics
Authors
Recent
Search
2000 character limit reached

Learning treatment effects while treating those in need

Published 10 Jul 2024 in cs.LG, stat.ME, and stat.ML | (2407.07596v2)

Abstract: Many social programs attempt to allocate scarce resources to people with the greatest need. Indeed, public services increasingly use algorithmic risk assessments motivated by this goal. However, targeting the highest-need recipients often conflicts with attempting to evaluate the causal effect of the program as a whole, as the best evaluations would be obtained by randomizing the allocation. We propose a framework to design randomized allocation rules which optimally balance targeting high-need individuals with learning treatment effects, presenting policymakers with a Pareto frontier between the two goals. We give sample complexity guarantees for the policy learning problem and provide a computationally efficient strategy to implement it. We then collaborate with the human services department of Allegheny County, Pennsylvania to evaluate our methods on data from real service delivery settings. Optimized policies can substantially mitigate the tradeoff between learning and targeting. For example, it is often possible to obtain 90% of the optimal utility in targeting high-need individuals while ensuring that the average treatment effect can be estimated with less than 2 times the samples that a randomized controlled trial would require. Mechanisms for targeting public services often focus on measuring need as accurately as possible. However, our results suggest that algorithmic systems in public services can be most impactful if they incorporate program evaluation as an explicit goal alongside targeting.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 11 likes about this paper.