Papers
Topics
Authors
Recent
2000 character limit reached

Planar Equivalence of Knotoids and Quandle Invariants

Published 10 Jul 2024 in math.GT | (2407.07489v1)

Abstract: While knotoids on the sphere are well-understood by a variety of invariants, knotoids on the plane have proven more subtle to classify due to their multitude over knotoids on the sphere and a lack of invariants that detect a diagram's planar nature. In this paper, we investigate equivalence of planar knotoids using quandle colorings and cocycle invariants. These quandle invariants are able to detect planarity by considering quandle colorings that are restricted at distinguished points in the diagram, namely the endpoints and the point-at-infinity. After defining these invariants we consider their applications to symmetry properties of planar knotoids such as invertibility and chirality. Furthermore we introduce an invariant called the triangular quandle cocycle invariant and show that it is a stronger invariant than the end specified quandle colorings.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.