Papers
Topics
Authors
Recent
2000 character limit reached

Drantal-NeRF: Diffusion-Based Restoration for Anti-aliasing Neural Radiance Field

Published 10 Jul 2024 in cs.CV | (2407.07461v1)

Abstract: Aliasing artifacts in renderings produced by Neural Radiance Field (NeRF) is a long-standing but complex issue in the field of 3D implicit representation, which arises from a multitude of intricate causes and was mitigated by designing more advanced but complex scene parameterization methods before. In this paper, we present a Diffusion-based restoration method for anti-aliasing Neural Radiance Field (Drantal-NeRF). We consider the anti-aliasing issue from a low-level restoration perspective by viewing aliasing artifacts as a kind of degradation model added to clean ground truths. By leveraging the powerful prior knowledge encapsulated in diffusion model, we could restore the high-realism anti-aliasing renderings conditioned on aliased low-quality counterparts. We further employ a feature-wrapping operation to ensure multi-view restoration consistency and finetune the VAE decoder to better adapt to the scene-specific data distribution. Our proposed method is easy to implement and agnostic to various NeRF backbones. We conduct extensive experiments on challenging large-scale urban scenes as well as unbounded 360-degree scenes and achieve substantial qualitative and quantitative improvements.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.