Differential privacy and Sublinear time are incompatible sometimes
Abstract: Differential privacy and sublinear algorithms are both rapidly emerging algorithmic themes in times of big data analysis. Although recent works have shown the existence of differentially private sublinear algorithms for many problems including graph parameter estimation and clustering, little is known regarding hardness results on these algorithms. In this paper, we initiate the study of lower bounds for problems that aim for both differentially-private and sublinear-time algorithms. Our main result is the incompatibility of both the desiderata in the general case. In particular, we prove that a simple problem based on one-way marginals yields both a differentially-private algorithm, as well as a sublinear-time algorithm, but does not admit a ``strictly'' sublinear-time algorithm that is also differentially private.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.