Papers
Topics
Authors
Recent
Search
2000 character limit reached

Connected Matchings

Published 8 Jul 2024 in cs.CG and math.CO | (2407.06131v2)

Abstract: We show that each set of $n\ge 2$ points in the plane in general position has a straight-line matching with at least $(5n+1)/27$ edges whose segments form a connected set, and such a matching can be computed in $O(n \log n)$ time. As an upper bound, we show that for some planar point sets in general position the largest matching whose segments form a connected set has $\lceil \frac{n-1}{3}\rceil$ edges. We also consider a colored version, where each edge of the matching should connect points with different colors.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.