Papers
Topics
Authors
Recent
2000 character limit reached

KAE: A Property-based Method for Knowledge Graph Alignment and Extension

Published 7 Jul 2024 in cs.AI | (2407.05320v1)

Abstract: A common solution to the semantic heterogeneity problem is to perform knowledge graph (KG) extension exploiting the information encoded in one or more candidate KGs, where the alignment between the reference KG and candidate KGs is considered the critical procedure. However, existing KG alignment methods mainly rely on entity type (etype) label matching as a prerequisite, which is poorly performing in practice or not applicable in some cases. In this paper, we design a machine learning-based framework for KG extension, including an alternative novel property-based alignment approach that allows aligning etypes on the basis of the properties used to define them. The main intuition is that it is properties that intentionally define the etype, and this definition is independent of the specific label used to name an etype, and of the specific hierarchical schema of KGs. Compared with the state-of-the-art, the experimental results show the validity of the KG alignment approach and the superiority of the proposed KG extension framework, both quantitatively and qualitatively.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.