Papers
Topics
Authors
Recent
2000 character limit reached

Energy-stable parametric finite element approximations for regularized solid-state dewetting in strongly anisotropic materials

Published 5 Jul 2024 in math.NA and cs.NA | (2407.04524v1)

Abstract: In this work, we aim to develop energy-stable parametric finite element approximations for a sharp-interface model with strong surface energy anisotropy, which is derived from the first variation of an energy functional composed of film/vapor interfacial energy, substrate energy, and regularized Willmore energy. By introducing two geometric relations, we innovatively establish an equivalent regularized sharp-interface model and further construct an energy-stable parametric finite element algorithm for this equivalent model. We provide a detailed proof of the energy stability of the numerical scheme, addressing a gap in the relevant theory. Additionally, we develop another structure-preserving parametric finite element scheme that can preserve both area conservation and energy stability. Finally, we present several numerical simulations to show accuracy and efficiency as well as some structure-preserving properties of the proposed numerical methods. More importantly, extensive numerical simulations reveal that our schemes provide better mesh quality and are more suitable for long-term computations.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.