Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning control variables and instruments for causal analysis in observational data (2407.04448v1)

Published 5 Jul 2024 in econ.EM

Abstract: This study introduces a data-driven, machine learning-based method to detect suitable control variables and instruments for assessing the causal effect of a treatment on an outcome in observational data, if they exist. Our approach tests the joint existence of instruments, which are associated with the treatment but not directly with the outcome (at least conditional on observables), and suitable control variables, conditional on which the treatment is exogenous, and learns the partition of instruments and control variables from the observed data. The detection of sets of instruments and control variables relies on the condition that proper instruments are conditionally independent of the outcome given the treatment and suitable control variables. We establish the consistency of our method for detecting control variables and instruments under certain regularity conditions, investigate the finite sample performance through a simulation study, and provide an empirical application to labor market data from the Job Corps study.

Citations (1)

Summary

We haven't generated a summary for this paper yet.