Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 33 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 74 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 362 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Moment-based Random-effects Meta-analysis Equipped with Huber's M-Estimation (2407.04446v2)

Published 5 Jul 2024 in stat.ME

Abstract: Meta-analyses are commonly used to provide solid evidence across numerous studies. Traditional moment methods, such as the DerSimonian-Laird method, remain popular in spite of the availability of more accurate alternatives. While moment estimators are simple and intuitive, they are known to underestimate the variance of the overall treatment effect, particularly when the number of studies is small. This underestimation can lead to excessively narrow confidence intervals that do not meet the nominal confidence level, potentially resulting in misleading conclusions. In this study, we improve traditional moment-based meta-analysis methods by incorporating Huber's M-estimation to more accurately capture the distributional characteristics of between-study variance. Our approach enables conservative parameter estimation, even when almost all existing methods lead to underestimation of between-study variance under a small number of studies. Additionally, by deriving the simultaneous distribution of overall treatment effect and between-study variance, we propose facilitating a visual exploration of the relationship between these two quantities. Our method provides more reliable estimators for the overall treatment effect and between-study variance, particularly in situations with few studies. Using simulations and real data analysis, we demonstrate that our approach always yields more conservative results compared to traditional moment methods, and ensures more accurate confidence intervals in meta-analyses.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.