Papers
Topics
Authors
Recent
Search
2000 character limit reached

Adaptive Step-size Perception Unfolding Network with Non-local Hybrid Attention for Hyperspectral Image Reconstruction

Published 4 Jul 2024 in cs.CV | (2407.04024v1)

Abstract: Deep unfolding methods and transformer architecture have recently shown promising results in hyperspectral image (HSI) reconstruction. However, there still exist two issues: (1) in the data subproblem, most methods represents the stepsize utilizing a learnable parameter. Nevertheless, for different spectral channel, error between features and ground truth is unequal. (2) Transformer struggles to balance receptive field size with pixel-wise detail information. To overcome the aforementioned drawbacks, We proposed an adaptive step-size perception unfolding network (ASPUN), a deep unfolding network based on FISTA algorithm, which uses an adaptive step-size perception module to estimate the update step-size of each spectral channel. In addition, we design a Non-local Hybrid Attention Transformer(NHAT) module for fully leveraging the receptive field advantage of transformer. By plugging the NLHA into the Non-local Information Aggregation (NLIA) module, the unfolding network can achieve better reconstruction results. Experimental results show that our ASPUN is superior to the existing SOTA algorithms and achieves the best performance.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.