Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Pairwise DomMix Attentive Adversarial Network for Unsupervised Domain Adaptive Object Detection (2407.02835v1)

Published 3 Jul 2024 in cs.CV

Abstract: Unsupervised Domain Adaptive Object Detection (DAOD) could adapt a model trained on a source domain to an unlabeled target domain for object detection. Existing unsupervised DAOD methods usually perform feature alignments from the target to the source. Unidirectional domain transfer would omit information about the target samples and result in suboptimal adaptation when there are large domain shifts. Therefore, we propose a pairwise attentive adversarial network with a Domain Mixup (DomMix) module to mitigate the aforementioned challenges. Specifically, a deep-level mixup is employed to construct an intermediate domain that allows features from both domains to share their differences. Then a pairwise attentive adversarial network is applied with attentive encoding on both image-level and instance-level features at different scales and optimizes domain alignment by adversarial learning. This allows the network to focus on regions with disparate contextual information and learn their similarities between different domains. Extensive experiments are conducted on several benchmark datasets, demonstrating the superiority of our proposed method.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Jie Shao (53 papers)
  2. Jiacheng Wu (16 papers)
  3. Wenzhong Shen (4 papers)
  4. Cheng Yang (168 papers)

Summary

We haven't generated a summary for this paper yet.