Papers
Topics
Authors
Recent
Search
2000 character limit reached

Examining the impact of forcing function inputs on structural identifiability

Published 3 Jul 2024 in q-bio.QM and math.DS | (2407.02771v1)

Abstract: For mathematical and experimental ease, models with time varying parameters are often simplified to assume constant parameters. However, this simplification can potentially lead to identifiability issues (lack of uniqueness of parameter estimates). Methods have been developed to algebraically and numerically determine the identifiability of a model, as well as resolve identifiability issues. This specific type of simplification presents an alternate opportunity to instead use this information to resolve the unidentifiability. Given that re-parameterizing, collecting more data, and adding inputs can be potentially costly or impractical, this could present new alternatives. We present a method for resolving unidentifiability in a system by introducing a new data stream correlated with a parameter of interest. First, we demonstrate how and when non-constant input data can be introduced into any rational function ODE system without worsening the model identifiability. Then, we prove when these input functions improve structural and potentially also practical identifiability for a given model and relevant data. By utilizing pre-existing data streams, these methods can potentially reduce experimental costs, while still answering key questions. By connecting mathematical proofs to application, our framework removes guesswork from when, where, and how researchers can best introduce new data to improve model outcomes.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.