Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Abstract Markov Random Fields (2407.02134v1)

Published 2 Jul 2024 in cs.IT and math.IT

Abstract: Markov random fields are known to be fully characterized by properties of their information diagrams, or I-diagrams. In particular, for Markov random fields, regions in the I-diagram corresponding to disconnected vertex sets in the graph vanish. Recently, I-diagrams have been generalized to F-diagrams, for a larger class of functions F satisfying the chain rule beyond Shannon entropy, such as Kullback-Leibler divergence and cross-entropy. In this work, we generalize the notion and characterization of Markov random fields to this larger class of functions F and investigate preliminary applications. We define F-independences, F-mutual independences, and F-Markov random fields and characterize them by their F-diagram. In the process, we also define F-dual total correlation and prove that its vanishing is equivalent to F-mutual independence. We then apply our results to information functions F that are applied to probability distributions. We show that if the probability distributions are Markov random fields for the same graph, then we formally recover the notion of an F-Markov random field for that graph. We then study the Kullback-Leibler divergence on specific Markov chains, leading to a visual representation of the second law of thermodynamics.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com