Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Markov random fields factorization with context-specific independences (1306.2295v1)

Published 10 Jun 2013 in cs.AI and cs.LG

Abstract: Markov random fields provide a compact representation of joint probability distributions by representing its independence properties in an undirected graph. The well-known Hammersley-Clifford theorem uses these conditional independences to factorize a Gibbs distribution into a set of factors. However, an important issue of using a graph to represent independences is that it cannot encode some types of independence relations, such as the context-specific independences (CSIs). They are a particular case of conditional independences that is true only for a certain assignment of its conditioning set; in contrast to conditional independences that must hold for all its assignments. This work presents a method for factorizing a Markov random field according to CSIs present in a distribution, and formally guarantees that this factorization is correct. This is presented in our main contribution, the context-specific Hammersley-Clifford theorem, a generalization to CSIs of the Hammersley-Clifford theorem that applies for conditional independences.

Citations (4)

Summary

We haven't generated a summary for this paper yet.