Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Information Theoretic Properties of Markov Random Fields, and their Algorithmic Applications (1705.11107v1)

Published 31 May 2017 in cs.LG, cs.DS, cs.IT, math.IT, math.ST, and stat.TH

Abstract: Markov random fields area popular model for high-dimensional probability distributions. Over the years, many mathematical, statistical and algorithmic problems on them have been studied. Until recently, the only known algorithms for provably learning them relied on exhaustive search, correlation decay or various incoherence assumptions. Bresler gave an algorithm for learning general Ising models on bounded degree graphs. His approach was based on a structural result about mutual information in Ising models. Here we take a more conceptual approach to proving lower bounds on the mutual information through setting up an appropriate zero-sum game. Our proof generalizes well beyond Ising models, to arbitrary Markov random fields with higher order interactions. As an application, we obtain algorithms for learning Markov random fields on bounded degree graphs on $n$ nodes with $r$-order interactions in $nr$ time and $\log n$ sample complexity. The sample complexity is information theoretically optimal up to the dependence on the maximum degree. The running time is nearly optimal under standard conjectures about the hardness of learning parity with noise.

Citations (62)

Summary

We haven't generated a summary for this paper yet.