Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fuzzy synthetic method for evaluating explanations in recommender systems (2407.02065v1)

Published 2 Jul 2024 in cs.HC

Abstract: Recommender systems aim to help users find relevant items more quickly by providing personalized recommendations. Explanations in recommender systems help users understand why such recommendations have been generated, which in turn makes the system more transparent and promotes users' trust and satisfaction. In recent years, explaining recommendations has drawn increasing attention from both academia and from industry. In this paper, we present a user study to investigate context-aware explanations in recommender systems. In particular, we build a web-based questionnaire that is able to interact with users: generating and explaining recommendations. With this questionnaire, we investigate the effects of context-aware explanations in terms of efficiency, effectiveness, persuasiveness, satisfaction, trust and transparency through a user study. Besides, we propose a novel method based on fuzzy synthetic evaluation for aggregating these metrics.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Jinfeng Zhong (7 papers)
  2. Elsa Negre (9 papers)

Summary

We haven't generated a summary for this paper yet.