Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
o3 Pro
5 tokens/sec
GPT-4.1 Pro
37 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

Synthetic Data in Radiological Imaging: Current State and Future Outlook (2407.01561v1)

Published 8 May 2024 in eess.IV, cs.AI, and cs.CV

Abstract: A key challenge for the development and deployment of AI solutions in radiology is solving the associated data limitations. Obtaining sufficient and representative patient datasets with appropriate annotations may be burdensome due to high acquisition cost, safety limitations, patient privacy restrictions or low disease prevalence rates. In silico data offers a number of potential advantages to patient data, such as diminished patient harm, reduced cost, simplified data acquisition, scalability, improved quality assurance testing, and a mitigation approach to data imbalances. We summarize key research trends and practical uses for synthetically generated data for radiological applications of AI. Specifically, we discuss different types of techniques for generating synthetic examples, their main application areas, and related quality control assessment issues. We also discuss current approaches for evaluating synthetic imaging data. Overall, synthetic data holds great promise in addressing current data availability gaps, but additional work is needed before its full potential is realized.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com