Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Transferable-guided Attention Is All You Need for Video Domain Adaptation (2407.01375v2)

Published 1 Jul 2024 in cs.CV

Abstract: Unsupervised domain adaptation (UDA) in videos is a challenging task that remains not well explored compared to image-based UDA techniques. Although vision transformers (ViT) achieve state-of-the-art performance in many computer vision tasks, their use in video UDA has been little explored. Our key idea is to use transformer layers as a feature encoder and incorporate spatial and temporal transferability relationships into the attention mechanism. A Transferable-guided Attention (TransferAttn) framework is then developed to exploit the capacity of the transformer to adapt cross-domain knowledge across different backbones. To improve the transferability of ViT, we introduce a novel and effective module, named Domain Transferable-guided Attention Block (DTAB). DTAB compels ViT to focus on the spatio-temporal transferability relationship among video frames by changing the self-attention mechanism to a transferability attention mechanism. Extensive experiments were conducted on UCF-HMDB, Kinetics-Gameplay, and Kinetics-NEC Drone datasets, with different backbones, like ResNet101, I3D, and STAM, to verify the effectiveness of TransferAttn compared with state-of-the-art approaches. Also, we demonstrate that DTAB yields performance gains when applied to other state-of-the-art transformer-based UDA methods from both video and image domains. Our code is available at https://github.com/Andre-Sacilotti/transferattn-project-code.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Samuel Felipe dos Santos (8 papers)
  2. Nicu Sebe (270 papers)
  3. Jurandy Almeida (20 papers)
  4. André Sacilotti (1 paper)
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com