Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Formal Verification of Deep Neural Networks for Object Detection (2407.01295v5)

Published 1 Jul 2024 in cs.CV

Abstract: Deep neural networks (DNNs) are widely used in real-world applications, yet they remain vulnerable to errors and adversarial attacks. Formal verification offers a systematic approach to identify and mitigate these vulnerabilities, enhancing model robustness and reliability. While most existing verification methods focus on image classification models, this work extends formal verification to the more complex domain of emph{object detection} models. We propose a formulation for verifying the robustness of such models and demonstrate how state-of-the-art verification tools, originally developed for classification, can be adapted for this purpose. Our experiments, conducted on various datasets and networks, highlight the ability of formal verification to uncover vulnerabilities in object detection models, underscoring the need to extend verification efforts to this domain. This work lays the foundation for further research into formal verification across a broader range of computer vision applications.

Summary

We haven't generated a summary for this paper yet.