A further $q$-analogue of a formula due to Guillera (2407.00621v1)
Abstract: Hou, Krattenthaler, and Sun have introduced two $q$-analogues of a remarkable series for $\pi2$ due to Guillera, and these $q$-identities were, respectively, proved with the use of a $q$-analogue of a Wilf-Zeilberger pair provided by Guillera and with the use of ${}{3}\phi{2}$-transforms. We prove a $q$-analogue of Guillera's formula for $\pi2$ that is inequivalent to previously known $q$-analogues of the same formula due to Guillera, including the Hou-Krattenthaler-Sun $q$-identities and a subsequent $q$-identity due to Wei. In contrast to previously known $q$-analogues of Guillera's formula, our new $q$-analogue involves another free parameter apart from the $q$-parameter. Our derivation of this new result relies on the $q$-analogue of Zeilberger's algorithm.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.