Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An invitation to game comonads (2407.00606v1)

Published 30 Jun 2024 in cs.LO and math.CT

Abstract: Game comonads offer a categorical view of a number of model-comparison games central to model theory, such as pebble and Ehrenfeucht-Fra\"iss\'e games. Remarkably, the categories of coalgebras for these comonads capture preservation of several fragments of resource-bounded logics, such as (infinitary) first-order logic with n variables or bounded quantifier rank, and corresponding combinatorial parameters such as tree-width and tree-depth. In this way, game comonads provide a new bridge between categorical methods developed for semantics, and the combinatorial and algorithmic methods of resource-sensitive model theory. We give an overview of this framework and outline some of its applications, including the study of homomorphism counting results in finite model theory, and of equi-resource homomorphism preservation theorems in logic using the axiomatic setting of arboreal categories. Finally, we describe some homotopical ideas that arise naturally in the context of game comonads.

Summary

We haven't generated a summary for this paper yet.