Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A game comonadic account of Courcelle and Feferman-Vaught-Mostowski theorems (2205.05387v1)

Published 11 May 2022 in cs.LO, math.CT, and math.LO

Abstract: Game comonads, introduced by Abramsky, Dawar and Wang, and developed by Abramsky and Shah, give a categorical semantics for model comparison games. We present an axiomatic account of Feferman-Vaught-Mostowski (FVM) composition theorems within the game comonad framework, parameterized by the model comparison game. In a uniform way, we produce compositionality results for the logic in question, and its positive existential and counting quantifier variants. Secondly, we extend game comonads to the second order setting, specifically in the case of Monadic Second Order (MSO) logic. We then generalize our FVM theorems to the second order case. We conclude with an abstract formulation of Courcelle's algorithmic meta-theorem, exploiting our earlier developments. This is instantiated to recover well-known bounded tree-width and bounded clique-width Courcelle theorems for MSO on graphs.

Citations (10)

Summary

We haven't generated a summary for this paper yet.