Papers
Topics
Authors
Recent
2000 character limit reached

Arboreal Categories: An Axiomatic Theory of Resources

Published 16 Feb 2021 in cs.LO, math.CT, and math.LO | (2102.08109v7)

Abstract: Game comonads provide a categorical syntax-free approach to finite model theory, and their Eilenberg-Moore coalgebras typically encode important combinatorial parameters of structures. In this paper, we develop a framework whereby the essential properties of these categories of coalgebras are captured in a purely axiomatic fashion. To this end, we introduce arboreal categories, which have an intrinsic process structure, allowing dynamic notions such as bisimulation and back-and-forth games, and resource notions such as number of rounds of a game, to be defined. These are related to extensional or "static" structures via arboreal covers, which are resource-indexed comonadic adjunctions. These ideas are developed in a general, axiomatic setting, and applied to relational structures, where the comonadic constructions for pebbling, Ehrenfeucht-Fra\"iss\'e and modal bisimulation games recently introduced by Abramsky et al. are recovered, showing that many of the fundamental notions of finite model theory and descriptive complexity arise from instances of arboreal covers.

Citations (11)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.