Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spiking Convolutional Neural Networks for Text Classification (2406.19230v1)

Published 27 Jun 2024 in cs.NE and cs.CL

Abstract: Spiking neural networks (SNNs) offer a promising pathway to implement deep neural networks (DNNs) in a more energy-efficient manner since their neurons are sparsely activated and inferences are event-driven. However, there have been very few works that have demonstrated the efficacy of SNNs in language tasks partially because it is non-trivial to represent words in the forms of spikes and to deal with variable-length texts by SNNs. This work presents a "conversion + fine-tuning" two-step method for training SNNs for text classification and proposes a simple but effective way to encode pre-trained word embeddings as spike trains. We show empirically that after fine-tuning with surrogate gradients, the converted SNNs achieve comparable results to their DNN counterparts with much less energy consumption across multiple datasets for both English and Chinese. We also show that such SNNs are more robust to adversarial attacks than DNNs.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com