Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 98 tok/s Pro
GPT OSS 120B 424 tok/s Pro
Kimi K2 164 tok/s Pro
2000 character limit reached

Mixture priors for replication studies (2406.19152v1)

Published 27 Jun 2024 in stat.ME and stat.AP

Abstract: Replication of scientific studies is important for assessing the credibility of their results. However, there is no consensus on how to quantify the extent to which a replication study replicates an original result. We propose a novel Bayesian approach based on mixture priors. The idea is to use a mixture of the posterior distribution based on the original study and a non-informative distribution as the prior for the analysis of the replication study. The mixture weight then determines the extent to which the original and replication data are pooled. Two distinct strategies are presented: one with fixed mixture weights, and one that introduces uncertainty by assigning a prior distribution to the mixture weight itself. Furthermore, it is shown how within this framework Bayes factors can be used for formal testing of scientific hypotheses, such as tests regarding the presence or absence of an effect. To showcase the practical application of the methodology, we analyze data from three replication studies. Our findings suggest that mixture priors are a valuable and intuitive alternative to other Bayesian methods for analyzing replication studies, such as hierarchical models and power priors. We provide the free and open source R package repmix that implements the proposed methodology.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.