The nonexistence of unicorns and many-sorted Löwenheim-Skolem theorems (2406.18912v1)
Abstract: Stable infiniteness, strong finite witnessability, and smoothness are model-theoretic properties relevant to theory combination in satisfiability modulo theories. Theories that are strongly finitely witnessable and smooth are called strongly polite and can be effectively combined with other theories. Toledo, Zohar, and Barrett conjectured that stably infinite and strongly finitely witnessable theories are smooth and therefore strongly polite. They called counterexamples to this conjecture unicorn theories, as their existence seemed unlikely. We prove that, indeed, unicorns do not exist. We also prove versions of the L\"owenheim-Skolem theorem and the {\L}o\'s-Vaught test for many-sorted logic.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.