Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 124 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Small-ball estimates for random walks on groups (2406.17587v1)

Published 25 Jun 2024 in math.PR and math.GR

Abstract: We prove a new inequality bounding the probability that the random walk on a group has small total displacement in terms of the spectral and isoperimetric profiles of the group. This inequality implies that if the random walk on the group is diffusive then Cheeger's inequality is sharp in the sense that the isoperimetric profile $\Phi$ and spectral profile $\Lambda$ of the group are related by $\Lambda \simeq \Phi2$. Our inequality also yields substantial progress on a conjecture of Lyons, Peres, Sun, and Zheng (2017) stating that for any transient random walk on an infinite, finitely generated group, the expected occupation time of the ball of radius $r$ is $O(r2)$: We prove that this conjecture holds for every group of superpolynomial growth whose spectral profile is slowly varying, which we conjecture is always the case. For groups of exponential or stretched-exponential growth satisfying a further mild regularity assumption on their spectral profile, our method yields the strong quantitative small-ball estimate [-\log \mathbb{P}\bigl(d(X_0,X_n) \leq \varepsilon n{1/2}\bigr) \succeq \frac{1}{\varepsilon2} \wedge (-\log \mathbb{P}(X_n=X_0)),] which is sharp for the lamplighter group. Finally, we prove that the regularity assumptions needed to apply the strongest versions our results are satisfied for several classical examples where the spectral profile is not known explicitly, including the first Grigorchuk group and Thompson's group $F$.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.