Papers
Topics
Authors
Recent
2000 character limit reached

DRTR: Distance-Aware Graph Representation Learning (2406.17281v5)

Published 25 Jun 2024 in cs.LG

Abstract: We propose \textbf{DRTR}, a novel graph learning framework that integrates distance-aware multi-hop message passing with dynamic topology refinement. Unlike standard GNNs that rely on shallow, fixed-hop aggregation, DRTR leverages both static preprocessing and dynamic resampling to capture deeper structural dependencies. A \emph{Distance Recomputator} prunes semantically weak edges using adaptive attention, while a \emph{Topology Reconstructor} establishes latent connections among distant but relevant nodes. This joint mechanism enables more expressive and robust representation learning across evolving graph structures. Extensive experiments demonstrate that DRTR outperforms baseline GNNs in both accuracy and scalability, especially in complex and noisy graph environments.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.